

Suryansh Aryan

+1 540-557-8599 | suryaryan@vt.edu | [LinkedIn](#) | [GitHub](#) | [Personal Website](#)

EDUCATION

Kevin T. Crofton Department of Aerospace Engineering, Virginia Tech	Blacksburg, VA, USA
<i>M.S Thesis in Aerospace Engineering, Specialization in Dynamics & Control, CGPA: 3.85/4.00</i>	<i>Aug 2023 – May 2026</i>
Manipal University	Manipal, KN, India
<i>Bachelors of Technology in Aerospace Engineering, CGPA: 9.09/10.00</i>	<i>July 2019 – July 2023</i>

EXPERIENCE

Graduate Research Assistant	May 2024 – Present
<i>Center for Space Science and Engineering, Virginia Tech</i>	<i>Blacksburg, VA, USA</i>
<ul style="list-style-type: none">• Spearheaded NSF-funded project development as part of space engineering team, with 2 other teams from NC State University & University of Surrey, driving research solutions in near-Earth communication resiliency.• Engineered a real-time mega constellation emulation, establishing 200+ global terrestrial and satellite connections with optimized log-normal traffic modeling over G/G/1 Queuing model.• Upgraded the satellite node communication resiliency upto 20% through innovative ISL grid scheme and congestion routing, leading to a robust SDR based MiniNet network for the codebase validation.	
UAV Research Intern	Jan. 2023 – July 2023
<i>Computational Intelligence Lab, Indian Institute of Science (IISc)</i>	<i>Bengaluru, India</i>
<ul style="list-style-type: none">• Evaluated 4 key challenges to sustainable precision agriculture via drone technology & constructed a costeffective architecture improving efficiency & affordability for Indian farmers upto \$3000.• Achieved over \$2,000 cost savings on high-end electronics & reduced maintenance expenses by up to two years.• Built GNC modules with SPI & CAN-based radars & depth camera drivers for PX4 & K++ flight controllers.• Improved canopy coverage efficiency by 40%, optimizing variable spraying for crops and trees through ROS/Gazebo simulations.	
Guidance-Navigation-Control Intern	May 2022 – Aug 2022
<i>General Aeronautics Pvt Ltd</i>	<i>Bengaluru, India</i>
<ul style="list-style-type: none">• Spearheaded the development of scalable SITL & HITL package enhancing trajectory planning for the company's autonomy project, saving \$1000+ on expensive flight controllers & high-resolution sensors.• Developed 3 innovative algorithms enabling decision-making to detect and navigate obstacles and targets, achieving precision agriculture objectives, saving 3+ months of the control division's efforts.• Implemented a robust metaheuristic GNC algorithm with APF collision avoidance in SITL, enhancing efficiency by 20%, saving 100+ hours of ground testing.	

PROJECTS

Distributed Fault-tolerant Asteroid Inspection <i>MATLAB, Simulink, Spice</i>	Aug 2024 – Present
<ul style="list-style-type: none">• Constructed an integrated Adhoc SMC controller with stochastic MPC controller to incorporate unmatched uncertainties in asteroid dynamics under frozen orbit conditions for distributed asteroid inspection problem.• Built a swarm reconfiguration strategy that generates optimal satellite-target pairs and compute desired reference trajectories for the adaptive controller using collocation-based BVP formulation.	
Level-Four Autonomous UAV SITL & HITL Design <i>Python, Ardupilot, PX4</i>	Aug 2020 – May 2022
<ul style="list-style-type: none">• Designed noval Guidance-Control architecture to mitigate realistic unobservable actuator uncertainties existing in low-quality motor and speed controllers.• Implemented fixed wing/multirotor autonomy by integrating CNN-based Yolov6 object detection and RGBD depth estimation/sensor fusion based localization for Indoor SLAM and outdoor APF-based obstacle avoidance.	

TECHNICAL SKILLS

Languages: Python, C/C++, C#, Julia, Markdown, HTML/CSS

Software Tools: MATLAB/Simulink, LabView, Mathematica, Robot Operating System (ROS), Ansys STK, GMAT, KSP, FlightGear, QGC, MissionPlanner

Developer Tools: Github/GitLab actions, DockerHub, DigitalOcean, Pytest, VS Code, Visual Studio, PyCharm, Jupyter notebook, Google colab

Libraries: Spice Toolkit, NumPy, Astropy, Poliastro, Pandas, Scikit, Matplotlib, SkyField, Tensorflow/Keras, OpenCV

Firmware/Hardware: Ardupilot, PX4, Betaflight, Navio2, Raspberry Pi 4, Jetson Nano, Intel NUC, CompactRIO